白皮书

使用显微红外分析微塑料的操作流程

介绍

微塑料正成为一个重大的全球环境问题。定期、有新 闻价值的重大研究揭示,塑料和微塑料存在于偏远的 地理位置,或作为污染物存在于不同消费品(特别是 食品和饮料)中以及海洋生物消化系统内。微塑料的 来源可能是初生微塑料,即专门设计或制造成小尺寸 的材料,或者从较大材料开始但在环境中分解成较小 碎片的次生微塑料。最初,微塑料经定义为尺寸小于 5 mm 的塑料材料,但是,尽管尚未有全球公认的定义, 但该定义现在经更普遍地表述为尺寸处于 1 mm 且小 至微米水平范围内的塑料颗粒。

环境中大量的塑料污染是一个看得见的重大问题,亟 待解决。小尺寸的微塑料人眼并不能看到,但它对水 生和海洋物种的健康有着重要影响,并且最终可能会 进入人类食物链。

分析含有微塑料的环境样品对确定其普遍性及其影响 至关重要。一系列的分析技术已应用于微塑料的分析。 在所采用的技术中,红外(IR)光谱分析,更具体而 言是红外显微镜,是检测和鉴别微塑料的主要分析技 术。

红外显微镜的微塑料分析操作流程

从原始样品到最终结果有几个步骤,包括采集样品到数据分析。所涉及的步骤可能会有所不同,这取决于样品类型和红外(IR)分析制备样品所需的样品净化量。工作流程如表 1 所示。

表 1. 微塑料分析操作流程所涉及的步骤。

样品采集	样品净化	红外样品 制备	数据收集和 分析
 海水 	• 过滤	• 滤膜的选择	采样模式
• 河流水	● 浮选	• 适合性	●透射
• 沉积物	• 消化	• 样品尺寸	 反射
•动物的消化道	• 酸处理		• ATR
• 消费者相关类	• 过氧化物		测量模式
• 化妆品	• 酶催化		• 点模式
•国内的			 映射
•日用消费品			• 成像
			• 颗粒检测

不同来源的样品和不同类型的样品都需要对其微塑料的 含量进行分析。不同的样品在采集和净化方面均有其自 身的复杂性。例如,瓶装水中微塑料的分析无需对样品 净化,而只需进行简单的过滤即可分析。而污水或动物 摄入的微塑料则需花费几天时间去净化样品,消解其他 有机材料,从而对微塑料进行"洁净"分析。

样品采集

以下对不同来源的样品所采取的采样策略做简要概述。

水采样

小溪、河流到湖泊、远海等多种不同水环境含有微塑料。 此外,据悉来自水处理厂的水也含有微塑料。采样要求 之间存在相似之处,因为要采集所需粒径范围内的所有 微塑料,并且了解水样的体积也非常重要。采用一致的 采样策略,可确定微塑料的数量和/或质量随着时间的 推移呈增加还是减少趋势。

样品采集对海水和淡水具有不同的要求,这主要是因为 水密度不同。大多数合成高分子材料的密度低于海水, 这意味着微塑料一般漂浮在水面上,但是许多高分子类 型材料都会沉没在淡水系统中。用于采集海水表面样品 的典型设备是一个拖于船后的已知网目尺寸的曼塔拖 网。对于水层面下的样品,则采用合适的浮游生物采集 网。这种方法也适用于湖泊和水湾。网目尺寸是一个重 要的参数,因为太小的网目会导致网在样品采集过程中 受到相当快的阻塞。样品采集的体积和面积可通过使用 流量计以及根据网的入口尺寸和采集过程中移动的距离 得以确定。为测试河流水,通常将网悬挂于河流中的一 个固定点,并且网的位置可得到设置或调整,以便在水 面上或水面下的固定深度进行采集。

沉积物采样

在许多情况下,可在沉积物样品(例如在海滩或河岸上) 的表面上观察到(微)塑料。在这种情况下,在分析前 可易于对样品进行提取和清理。但是,微塑料存在于沉 积物的更深层处,因此需要采用一种采样策略。通常采 集已知质量或体积的沉积物,并确定每单位体积颗粒的 质量或数量。沉积物样品可采集自海床、湖泊或河床, 或者在潮汐或河流水位降低时采集自海滩或河岸。沉积 物样品需要进一步的样品净化以便提取微塑料用于分 析,下文将对该过程做介绍。

动物摄入的塑料采样

据悉,塑料和微塑料存在于多种海鸟和海洋生物的胃中, 且通常会导致死亡。¹较大的塑料材料可从生物的解剖 胃中物理提取而得,其在分析前需进行清理。为确定包 括微塑料在内的塑料总量,有必要在分析前通过消解完 全去除生物材料。下文将对消解的各种方法作讨论。消 解过程会留下塑料材料并且有望去除所有其他材料。

家用品和日用消费品采样

在家庭中有几种微塑料被释放到排水系统中。众所周 知,洗衣机在清洗的过程中会产生成千上万的纤维。² 此外,尽管根据不同国家和地区的立法,塑料微珠的使 用正在逐步淘汰,但是许多日用消费品和化妆品(例如 牙膏和沐浴露)均含有塑料微珠成分。来自家用品的微 塑料的采样可通过在洗衣机的出水口或排水系统的出水 口上安装具有合适网目尺寸的筛网得以完成。就去角质 剂和身体磨砂膏而言,其大多数成分具有水溶性,因此 在过滤前,将样品与开水混合通常能去除微塑料之外的 所有物质。³

样品净化

为从红外显微镜分析中获得最佳结果,必须确保样品洁 净且无任何干扰物质(例如生物基质)。以下是红外分 析前用于样品净化所采用的不同方法的简要概述。

密度分离法(漂浮)

塑料具有多种密度范围,因此一些塑料会漂浮在淡水或 海水中,而另一些则会沉没。这种漂浮原理可用于将塑 料材料与密度通常较高的其他物质(例如沉积物)分离。 通过将样品与(密度较高的)饱和盐溶液混合,可扩大 漂浮的塑料材料的范围,并且可从液体的上层部分去除 塑料。

塑料的密度范围大约从 0.9g/cm³(聚丙烯(PP)和低 密度聚乙烯(LDPE))至 1.4g/cm³(聚对苯二甲酸乙二 醇酯(PET)和聚氯乙烯(PVC))不等。⁴

因此对于典型密度为 1-1.05g/cm³ 的淡水或海水样品, PP 和 LDPE 将通过漂浮从密度显著较高的沙子或沉积 物中分离出来。

已采用一系列将溶液密度最大化的饱和盐溶液,以便使 更多种范围的塑料材料得以漂浮。567采用了密度为 1.2-1.8g/cm³的氯化钠、溴化物和碘化物以及密度为 1.7g/cm³的氯化锌。 分离过程包括搅拌样品,通常是沉淀物样品,并使溶液 沉降。然后取溶液的上清液过滤后分析。

样品消解

样品消解的目的是去除会干扰微塑料分析但不会影响微 塑料本身的生物、无机或有机材料。根据样品基质,可 采用一系列不同的样品消解技术。用于消解的材料可具 有酸性、碱性、氧化性或酶促性。^{8,9,10}对于酸性消解, 采用的是热硝酸,但是这将导致一些高分子类型材料降 解。10% 的氢氧化钾溶液已作为基底物。经证明,处 于 30-40% 范围内的过氧化氢溶液具有有效性。但是, 消解可能较缓慢,其需要耗费几天时间才可完成。采用 蛋白酶 K 作为酶消解具有有效性。这种处理速度显著 加快,并且在 50℃下两小时的消解可从样品中去除大 量生物材料并且不会降解塑料本身。

过滤

在一些样品类型中,过滤是指从样品基质中分离出所需 的微塑料(例如瓶装水中微塑料的采集和测量)。在许 多情况下,过滤是样品净化过程后的附加步骤。过滤过 程需要符合分析的要求,并且可用作样品净化步骤。使 用不同网目尺寸的筛网可以将塑料收集调整到分析技术 所需的样品尺寸大小。例如,最初采用大的网目尺寸可 过滤掉存在的较大塑料或者可去除其他较大的碎片,以 便防止过滤器堵塞。微塑料可受到较小网目尺寸的筛网 或滤膜的截留。采用标准红外光谱仪易于分析较大的塑 料。但是,红外显微镜更常用于微塑料的分析。在某些 情况下,对筛网上采集的微塑料所作的红外显微镜分析 可直接在筛网上进行。³过滤过程的优化将在后面进行 描述。

用于红外分析的样品制备

红外光谱分析是识别和鉴定高分子材料的主要分析技术。材料的红外光谱为该材料提供唯一的"指纹",并 且可与大量的光谱库作比较以进行正确识别。采用标准 的红外光谱仪器和衰减全反射(ATR)采样技术易于测 量尺寸不小于 100 微米左右的微塑料纤维和颗粒。小 型便携式红外光谱仪器(图 1)可携带至船上,以便立 即识别采集的样品。¹¹

对于利用ATR进行测量的较大样品,通常无需样品制备。 将样品直接置于 ATR 附件上,采用压力臂施加压力并

图 1. 具有 ATR 采样模块的 Spectrum Two 红外光谱仪。

扫描样品。但是,应注意的是,在环境中存在了相当长 时间的塑料已风化,并且其表面可能覆有生物膜。ATR 是一种表面技术。因此,在这种情况下,建议将塑料样 品切片并测量样品的内部体积而非受损 / 受包覆表面。

红外显微镜或红外成像系统可用于测量更小的颗粒。为 从此类技术中获得最佳结果,必须将微塑料从样品基质 中分离出来。上述样品采集和样品净化的介绍中已对该 方法作出讨论。但是,具体操作步骤可针对红外显微镜 进行优化。

优化红外显微镜分析的过滤过程

样品过滤会将微塑料分离至合适的基底上用于分析。滤 膜具有多种尺寸、过滤材质和孔径尺寸,以便优化过滤 过程。某些过滤材料在光谱的红外线区域内具有显著的 吸附作用,并且这些材料将掩盖因感兴趣的颗粒引起的 吸附。因此,采用最合适的过滤材料极其重要。一系列 不同的滤膜类型和尺寸已得以评价,以便为红外显微镜 的微塑料分析确定最佳滤膜类型(表 2)。

表 2. 评估一系列不同的滤膜与显微红外测试的适用性

直径	直径	孔径	成本 / 滤膜
氧化铝	13 mm	0.2 µm	\$8
玻璃纤维	21 mm	混合	\$0.2
镀金 聚碳酸酯	13 mm	0.8 µm	\$13
PVDF	25 mm	0.45 μm	\$2
银	13 和 25 mm	5 µm	\$8
硅	10 mm ²	5 µm	\$20

滤膜直径将影响样品容量和过滤能力并且应保持具有 合理的尺寸,以便减少红外成像所需的时间。孔径将 决定待截留的最小粒径,但该尺寸不能易受某些样品 基质堵塞。对于与红外分析之间的兼容性,(归因于红 外分析的近似衍射极限)颗粒需大于 1.5 微米,并且 滤膜的可用光谱范围极其重要。每个滤膜的相对成本 可能非常重要,但是对于样品净化可能耗费几小时或 几天时间的样品,滤膜的成本就并非十分重要。对于 样品处理量较高的实验室,这应该是一个重要的考虑 因素。

下文将对红外显微镜的采样模式作更详细的讨论,但 是对于滤膜上的颗粒分析,其选择通常受限于透射或 反射。在进行多种颗粒的自动测量时可使用 ATR,但 是样品容易受到交叉污染。滤膜类型需要在透射或反 射模式下对红外光不出现任何显著的吸收。表 1 所示 是记录了滤膜的红外透射和反射光谱,并确定每种类 型的可用范围。图 2a 所示为透射模式总结,而图 2b 所示为反射模式总结。

镀金聚碳酸酯滤膜具有极好的反射能量,但无透射能量,而 PVDF 滤膜在透射和反射模式下均显示出显著的吸收带,因此不合适。

建议使用硅滤膜进行透射分析,并使用硅、银膜或镀金 聚碳酸酯进行反射分析。

硅的唯一缺点是相对成本较高以及不是标准过滤系统所 直接兼容的尺寸,属于"非标准"尺寸(矩形尺寸)。

1000

500

图 2a 和 2b。不同滤膜类型的透射和反射范围。

两种不同滤膜类型的示例光谱如图 3 所示。

图 3. 不同类型滤膜的透射和反射范围。

显微红外分析

图 4.PerkinElmer Spotlight 400 红外成像系统

采样模式

采用红外测量常规样品的原则,使用显微红外对微塑料 样品进行测量。采样模式是透射、反射或 ATR。相同的 优势和不足之处同样适用于显微红外。

1. 透射

为在透射模式下测量样品,样品应置于合适的红外透射 基底上。样品厚度通常应小于 50 微米,以免达到吸收 饱和。如果分析包含少量颗粒,且可能"挑选"颗粒, 则最好的方法是将颗粒定位于显微镜样品载物架的 13 mm KBr 窗片上。如此可确保分离颗粒,并将采集到颗 粒的纯光谱。如果颗粒厚度大于 50 微米,则可将样品 置于微型金刚石压池中,压至更薄的尺寸,可以在显微 镜台上进行透射测量。但是,在大多数情况下,即使使 用显微镜工具,样品也显得太厚或不容易分离。如前所述, 可使用合适的红外透射模式的滤膜,而无需制备样品或 将颗粒移除至其他基底上。另外,在大多数情况下,某 些颗粒的尺寸小于 50 微米,而另一些则更大。去除大 量颗粒的过程耗时长且困难。

2. 反射

当分析目的是定性样品时,通常不在本体聚合物上进行 反射测量(直接镜面反射法)。所获得的光谱将包含混合 的光谱成分,即表面反射和透射 / 反射成分。此类成分 会导致光谱失真,特别是光谱的较强波段,并会干扰光 谱库的搜索过程。但是,透射 / 反射成分通常可能是主 要的光谱贡献,并产生可识别的光谱。当红外光束照射 到样品时,一些光束将直接反射离开样品表面,其余光 束将进入(透射)或穿过样品。如果将样品置于高反射 基底上,如金反射镜或反射滤膜,则光束将反射离开该 基底并回穿样品,从而有效地提供双重透射。因此,从 反射测量中可获得优质的光谱,但是,最强波段可能非 常强。对于有一定厚度的样品,反射比透射效果好。

3. ATR

ATR 已成为在 FT-IR 仪器上简单测量和识别样品的标准 技术。该技术无需制备样品,并且可作用于一系列不同 的样品尺寸,包括在透射或反射方面不起作用的厚度过 大的样品。这是一种表面测试技术,因此,所获得的光 谱是材料表面的光谱,而非体积光谱。此外,所测量的 有效样品厚度处于1或2微米的范围内,这导致红外光 谱较弱。但是,所获得的光谱强度足以识别材料或材料 的主要成分。显微红外可配备微型 ATR 晶体, 以对微粒 进行自动 ATR 测量。如果样品位于坚硬的固体基底上, 如金反射镜、窗口材料或显微镜载玻片,并且含有非常 少量的颗粒,则在每次测量 / 颗粒之后,只要清洁 ATR 晶体, ATR 即可成为一种可使用的技术。ATR 的测试原 则是基底与 ATR 晶体之间的对样品的压缩。在测量之后 即释放压力时,样品经常留在 ATR 晶体上,而并非回到 基底上。因此,如果在不清洁晶体的情况下测量多个颗粒, 交叉污染将是一个主要问题。因此,通常不采用显微 ATR 采样模式。

在 ATR 成像中,表面明显较大的 ATR 晶体与样品接触, 并在整个晶体表面上进行 ATR 测量。

显微红外的测量模式

红外显微镜能够测量单个微观粒子,但其还有一个额外的优点,即能够以全自动模式运行来测量样品中的多个 颗粒,也能够对整个样品(如完整的滤膜)进行绘图 (map)或成像(image)。自动化应用于每种前述的不 同的采样模式。显微镜还配有可视摄像机,以允许操作 员查看其正在使用的样品,并设置位置进行分析。

点模式

在点模式下,软件允许用户选择一个或多个对应于颗粒 的测量位置。然后,红外显微镜将驱动载物台至测量位置, 以进行扫描,然后移动至下一个样品位置。如果样品含 有少量颗粒,则上述方法可能是一种非常快的光谱收集 方法。对于每个位置,软件控制的光阑大小应可视地包 围颗粒,以避免杂散光。与标准红外光谱测量一样,需 采用合适的背景扫描,并且应使用与样品扫描相同的孔 径尺寸在红外显微镜上来执行。对于透射,应在无样品 的空白区中测量背景。对于反射,应在反射基底的空白 区中记录背景。对于ATR,应使用干净的晶体来测量背景。

软件内的颗粒检测算法能够分析可见图像来发现样品内 颗粒的存在。然后,软件将自动扫描所有颗粒和适当背 景的光谱。相对于手动选择分析位置,该方法具有显著 的速度优势,或者,如果对整个样品进行绘图或成像, 则可节省大量时间。图 5 所示为颗粒识别工具。

图 5. 分析图像发现存在的颗粒。

绘图 (Mapping)

Mapping 实验涉及定义待测量的样品面积(这可能是几 毫米),以及定义整个样品上测量的 X、Y 间距。例如, 如果样品为 0.7 mm×1 mm,并且应每 100 微米进行一 次测量,则 Mapping 实验将进行 70 次测量(7×10)。 在每个点上收集红外光谱,并在整个面积上生成样品的 红外图。

Mapping 实验利用红外显微镜中存在的单点检测器(通常是 MCT 检测器),并将测量单个光谱、移动载物台、测量光谱,移动载物台。对于小样本区域或大 XY 间距,这已足够。但是,对于大样本区域(如滤膜),或测量小XY 间距的非常小的颗粒, Mapping 实验可能非常慢,并且需要很长时间。

成像 (Imaging)

成像 Imaging 实验类似于绘图 Mapping 实验,不同之 处在于成像实验使用具有元件阵列的检测器同时测量多 个点,而非单个检测器元件,导致整体测量速度显著加快。 阵列检测器可能是线性阵列或焦平面阵列。线性阵列具 有几何形状 n×1,其中 n 通常为 16 或 32,而焦平面阵 列具有几何形状 n×n,其中 n 通常为 16、64 或 128。 焦平面阵列检测器的价格较高,并且其光谱截止值约为 s/b 950 cm -1,以致于忽略某些重要的光谱信息,而线 性阵列检测器具有低至 s/b 600 cm -1 的完整 MCT 光谱 范围。

图 6. Mapping 实验收集一行数据点,然后移动至下一行, 直至完成为止。

图 7a 和 7b. (a) 线性阵列检测器收集一"列"数据点, 然后移动 至下一"列"。(b) 焦平面阵列检测器在一次测量中收集数列和 数行数据点。

红外成像的一个示例如图 8 所示。

图 8. 从化妆品配方中过滤的微塑料颗粒的总红外吸光度图像。

在红外图像中的每个像素均有与之相关的完整的红外 光谱。在点模式下工作时,系统将每个颗粒生成一个 光谱。在图像模式下工作时,系统将每像素生成 1 个 光谱,从而导致每次实验产生大量数据。例如,以 6.25 μm 像素大小测量的 10 mm × 10 mm 图像将包 含超过 250 万个光谱。软件的各种处理工具均考虑到 简化数据解析步骤,最强大的是主成分分析 (PCA)。 在 PerkinElmer 光谱图像软件中,该分析法通过选择 Show Structure 功能得以引用。该功能将使用 PCA 在 样品内寻找不同的化学组分。不同的 PCA 组分将表示 存在的不同材料,并针对不同组分生成图像,以指示 样品内不同材料的分布位置。图 9a-d 所示为一个示例

图 9a-d.(a)总吸光度红外图像。(b)显示混合组分的 PCA 分析。不同的组分采用不同的颜色,以区分不同的化学成分类型。(c)2 组分图像。 (d) 4 组分图像。

图 10. 观察到的颗粒光谱;组分 4 的图像即聚乙烯(顶部), 以及组分 2 的图像即聚丙烯(底部)。

参考文献

- 1. J van Franeker et al, Environmental Pollution 159 (2011) 2609-2615.
- 2. Browne A., 2011, Accumulations of microplastic on shorelines worldwide: sources and sinks, Environmental Science and Technology.
- Robertson I., PerkinElmer Application Note 012079_01, "Detection and Identification of Microplastic Particles in Cosmetic Formulations Using IR Microscopy".
- 4. <u>https://www.stelray.com/reference-tables/</u>, accessed 3rd August 2018.
- 5. Labo magazine Oktober 2010, "Wasserverschmutzung durch Mikroplastikpartikel", www.labo.de.
- Imhof, H. K., et al, Limnology and Oceanography-Methods, 10, 524–537.
- 7. Liebezeit, G., and Dubaish, F. (2012). Bulletin of Environmental Contamination and Toxicology, 89(1), 213–217.
- 8. Thompson, R. C., et al, Science, 304(5672), 838.
- 9. Liebezeit, G., and Dubaish, F. (2012). Bulletin of Environmental Contamination and Toxicology, 89(1), 213–217.
- 10. Claessens, M., et al, Marine Pollution Bulletin, 70(1-2), 227-233.
- 11. Cole, M., et al, Scientific Reports, 4, 4528.

拍金埃尔默企业管理(上海)有限公司 地址:上海张江高科技园区张衡路 1670 号 邮编:201203 电话:021-60645888 传真:021-60645999 www.perkinelmer.com.cn

请访问 www.perkinelmer.com/ContactUs 查看我公司全球办事处的详单

版权 ©2018, 珀金埃尔默公司。版权所有。PerkinElmer[®]是珀金埃尔默公司的注册商标。所有其他商标属于相应所有者的财产。